曾经人类以为😺计算机是世上计算最快的工具。
在二十一世纪时,人类看着超级计算机隔三岔五的刷新🔆♼记🁘录,什么一秒🝆计算多少多少亿次,往往下意识感到敬畏,并在心中默默的掐一下几加几等于几,然后仰天长叹,“超算好犀利,人力不能及”之类的云云。
当时很🔝多人都并未意识到,宇宙里运算最快的🙆装置不是什么超算,而是掌握了混沌算法的人脑。
混沌算法真正复🙕杂与快速的地方,不在于求得结果的速度,而在于计算过程的本身。
但🔋⚭混沌算法并非完美无缺,计算过程📝🛹中随机性太😤🃘大,多线程并行的特性无法完全收束。
举个例子,人在脑海中想一个简单的问题,一加😤🃘一等于几?
答案显而易见,等于二。
但在“二”这个字出现之前,人脑中会在瞬间闪过无🝩数数字,“一、二、三……无穷大”。
哪怕是如此确😺凿的答案,人🅌脑也会随机性的给出😤🃘无数种可能。
在每一种可能被🙕证明🞘🔘错误之前,都不会被人脑完全排除。
最终人脑做出决策的依据往往不是🄶🂄计算机那样确凿,而是在无数个答案中找到最可能正确的那个,并作为答案说出口。
这个感性证伪的过程中,既为人类提供了无限想象的可🔆♼🔆♼能,却又耽搁了🝆时间。
后来,又经过大量的论证,科学家们终于找到让人脑绕过无数条并行线程迅速直通确凿答案的方法,正是由无数量子螺旋的🕈🇧规律催生出的直觉🝧🍤反应。
当问题出现🆏🎡的同时,第一直觉🙘其实已经同步给出了答案。
两者之间的时间差,几乎没有。
不能说人的直觉一定正确,但一定是人🁕🅦脑中最自负,出现得最快的答案。
错了,便付出代价。
对了,便战无不胜。
此时的童玲便正在她的终极考核中,将一切交给了直🝩觉。
虚🔋⚭拟世界里似😺醒未醒的她并🅌未意识到自己面前的虚拟敌人已经被替换,变成了水晶水熊虫的一对一投影。
在她之前的闯😺关过程中,模拟任务本就会时常发生变化,避免因为设定重复而被她形成身体与思维的😣🃏🖲双重惯性记忆,并靠着机🐵🄎🟦械化的惯性操作而轻易过关。
这也比较符合事实,毕🗙竟陈锋本人在真实战♬场🙆上就总会碰到新“惊喜”。